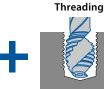
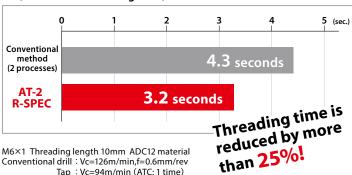
AT-2 R-SPEC

High-efficiency thread mill with end-cutting edge for non-ferrous metals


Super highefficiency threading

"ThreadRacer

Threading time can be dramatically reduced!



Achieves drilling and threading by continuous helical cutting with a single tool

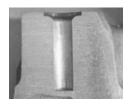
■ Threading time comparison with conventional method (includes non-cutting time)

Tap: Vc=94m/min (ATC: 1 time)

: Vc=220m/min,f=1.2mm/rev

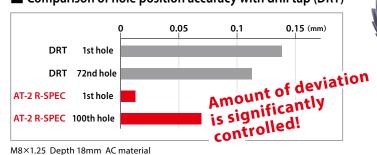
Climb milling

Left-hand cut configuration


*Counterclockwise spindle rotation

With end-cutting edge

Helical drilling + threading


can be done simultaneously

Useful for preventing shifting of cutting position in cast hole!

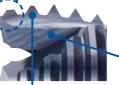
Rough position settings and inclined nature of cast holes can cause position shifting in following processes...

■ Comparison of hole position accuracy with drill tap (DRT)

Cutting test by shifting the axial center of ϕ 4.3 pilot hole by 0.7 mm

Drill tap : Vc=100m/min,f=1.25mm/rev AT-2 R-SPEC : Vc=220m/min,f=1.2mm/rev

Oil hole


Superior chip evacuation (Tool DC = ϕ 4.6 or more)

DLC-IGUSS coating

Welding prevention & long tool life

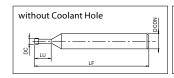
Special cutting edge shape

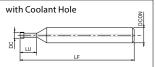
Bending of the tool can be controlled

2-flute Wide chip room

Roughing teeth (2 ridges)

Higher efficiency by load distribution


Possible to thread with air-blow!


Cutting oil sometimes cannot be used for machining aircraft and electrical parts...

Water-soluble coolant is generally recommended. However, air-blow can also be used when a pre-drilled hole is made to enhance chip separation and restrain welding of the DLC coating.

Dimension

Effective thread 2 x D type

Unit:mm

EDP No.	Thread Size	DC	LF	Maximum threading length	LU	DCON	Flutes	Oil Hole	Stock	Price (Yen)	
8331220	M 3×0.5	2.4	50	6	7.75	6	2	_	0	9,410	
8331221	M 4×0.7	3.1	50	8	10.45	6	2 –		0	9,580	
8331222	M 5×0.8	4	50	10	12.8	6	2	_	0	9,960	
8331223	M 6×1	4.6 50		12	15.5	6	2	0	0	10,200	
8331224	M 8×1.25	6.2	70	16	20.38	8	2	0	0	15,900	
8331225	M 10×1.5	7.5	80	20	25.25	10	2	0	0	16,600	
8331226	M 12×1.75	9	80	24	30.13	10	2	0	0	17,700	

Effective thread 2.5 x D type

Unit:mm

EDP No.	Thread Size	DC	LF	Maximum threading length	LU	DCON	Flutes	Oil Hole	Stock	Price (Yen)	
8331227	M 3×0.5	2.4	50	7.5	9.25	6	2	_	0	9,410	
8331228	M 4×0.7	3.1	50	10	12.45	6	2	- 0		9,580	
8331229	M 5×0.8	4	50	12.5	15.3	6	2	_	0	9,960	
8331230	M 6×1	4.6	50	15	18.5	6	2	0	0	10,200	
8331231	M 8×1.25	6.2	70	20	24.38	8	2	0	0	15,900	
8331232	M 10×1.5	7.5	80	25	30.25	10	2	0	0	16,600	
8331233	M 12×1.75	9	80	30	36.13	10	2	0	0	17,700	

○=Limited standard stock item

Recommended cutting conditions

Use OSG's helpful NC code generator software "ThreadPro!

Work Material		Aluminum Alloy Casting					Wrought Aluminum Alloy · Magnesium Alloy						Copper Alloy						
		AC4C · ADC					A5052 · A7075 · AZ91 · AZ80A						C1100						
Recommended C	ecommended Coolant Water-Soluble					Water-Soluble						Water-Soluble							
Cutting Speed (m	tting Speed (m/min) $100 \sim 300$					100 ~ 300							100 ~ 300						
Thread Size DC		2 x D Type		2.5 x D Type		2 x D Type			2.5 x D Type			2 x D Type			2.5 x D Type				
	DC	Speed (min ⁻¹)	Feed (mm/min)	Feed per Tooth (mm/t)	Speed (min ⁻¹)	Feed (mm/min)	Feed per Tooth (mm/t)	Speed (min ⁻¹)	Feed (mm/min)	Feed per Tooth (mm/t)	Speed (min ⁻¹)	Feed (mm/min)	Feed per Tooth (mm/t)	Speed (min ⁻¹)	Feed (mm/min)	Feed per Tooth (mm/t)	Speed (min ⁻¹)	Feed (mm/min)	Feed per Tooth (mm/t)
M 3×0.5	2.4	13,263	1,592	0.3	13,263	1,592	0.3	13,263	159	0.03	13,263	159	0.03	13,263	159	0.03	13,263	159	0.03
M 4×0.7	3.1	14,375	1,941	0.3	14,375	1,941	0.3	14,375	194	0.03	14,375	194	0.03	14,375	194	0.03	14,375	194	0.03
M 5×0.8	4	15,915	1,910	0.3	12,732	1,528	0.3	15,915	255	0.04	12,732	204	0.04	15,915	255	0.04	12,732	204	0.04
M 6×1	4.6	15,224	2,842	0.4	11,072	2,067	0.4	15,224	284	0.04	11,072	207	0.04	15,224	284	0.04	11,072	207	0.04
M 8×1.25	6.2	12,322	2,218	0.4	8,214	1,479	0.4	12,322	277	0.05	8,214	185	0.05	12,322	277	0.05	8,214	185	0.05
M10×1.5	7.5	10,186	2,037	0.4	6,791	1,358	0.4	10,186	255	0.05	6,791	170	0.05	10,186	255	0.05	6,791	170	0.05
M12×1.75	9	8,488	1,698	0.4	5,659	1,132	0.4	8,488	212	0.05	5,659	141	0.05	8,488	212	0.05	5,659	141	0.05

- · AT-2 R-SPEC is only for milling internal threads.
- · This cutting condition table shows standard values. When machining, it is recommended to use the program created by the NC code generator software ThreadPro.

 • Please select "Single-feed" for the path type in ThreadPro. Please adjust the cutting conditions
- depending on the rigidity of machine, tool holders, and workpiece clamping. · Tool vibrations should be kept at a minimum level for maximum accuracy.
- $\cdot \ When \ machining \ magnesium \ alloy \ materials, \ please \ use \ the \ coolant \ oil \ recommended \ by \ the$ coolant oil manufacturer. Please also properly dispose the cutting chips to prevent fire hazards.
- · Spindle rotation must be counterclockwise due to the left-hand cut configuration.

Note

Bottom shape of finished hole is as depicted in the right picture. Please make sure that it is acceptable based on the cutting instruction in advance.

OSG Corporation

3-22 Honnogahara, Toyokawa-City, Aichi 442-8543, Japan TEL:+81-533-82-1118 FAX: +81-533-82-1136

E-mail: cs-info@osg.co.jp Web: https://www.osg.co.jp/

Eastern Japan Sales Division

3-25-4 Minamimagome, Ota-ku, Tokyo 143-0025, Japan TEL: +81-3-5709-4501 FAX: +81-3-5709-4515

Central Japan Sales Division -

1-9 Kifune, Meito-ku, Nagoya-City, Aichi 465-0058, Japan TEL: +81-52-703-6131 FAX: +81-52-703-7775

Western Japan Sales Division

NaniwasuziSIA Bldg. #405, 2-4-2, Shin-machi, Nishi-ku, Osaka-City, Osaka 550-0013, Japan

TEL: +81-6-6538-3880 FAX: +81-6-6538-3879