

Nano-polycrystalline CBN Grade

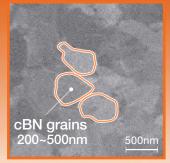
SUMIBORON BINDERLESS NCB100

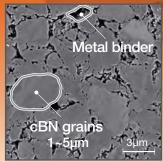
Excellent performance for Machining of Exotic Alloys

Adopt **SUMIBORON BINDERLESS**, nano-polycrystalline CBN, for cutting edges

High efficiency and high precision machining are possible due to the use of the CBN tools with no binders

SUMITOMO ELECTRIC GROUP


PMKNSH^{Carneted}


Nano-polycrystalline CBN SUMBORON BINDERLESS

SUMIBORON BINDERLESS are CBN with nano to submicron CBN grains bound tight and no binders.

The higher hardness and improved thermal conductivity compared to conventional CBN grades ensure higher efficiency and longer tool life for use with exotic alloys such as titanium alloy and Co-Cr alloy.

Comparison of Structure (SEM image)

SUMIBORON BINDERLESS

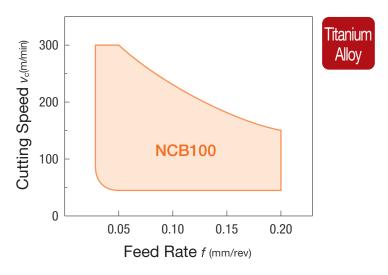
Conventional CBN

Characteristic Values

	SUMIBORON BINDERLESS	Conventional CBN
cBN content (vol%)	100	90 ~ 95
Binder	-	WC-Co
Hardness Hv (GPa)	51 ~ 54	41 ~ 44
Thermal conductivity (W/m⋅K)	180 ~ 200	100 ~ 120

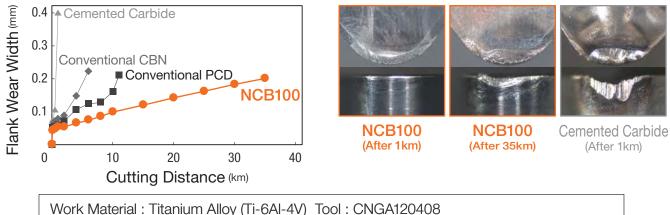
Nano-polycrystalline CBN Grade **NCB100**

The cutting edge in NCB100 adopts nano-polycrystalline CBN with higher hardness and improved thermal conductivity compared to conventional CBN. This ensures higher efficiency, improved accuracy, and impressively longer tool life for machining exotic alloys such as titanium alloy and Co-Cr alloy.


•Suitable for high efficiency finishing of exotic alloys such as titanium alloy, Co-Cr alloy, etc.

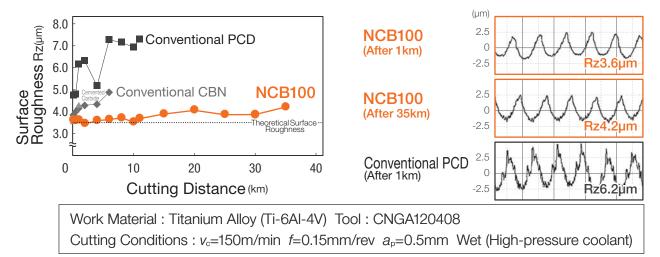
Outstanding wear resistance are achieved by the excellent hardness and thermal conductivity of nano-polycrystalline CBN

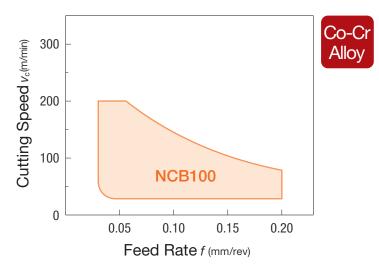
Superior dimensional tolerances and machined surface roughness over many hours


Less tool replacements compared to conventional grades will improve work efficiency and reduce total costs

Application Range (Titanium Alloy Machining)

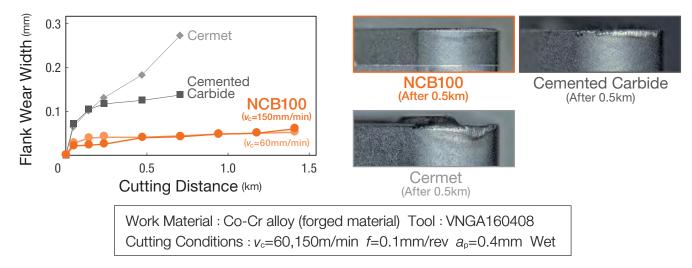
•Wear Resistance (Titanium Alloy Machining)


Up to 53 times better wear resistance against cemented carbide tools with high-speed machining, and simple lifetime management with uniform wear progression

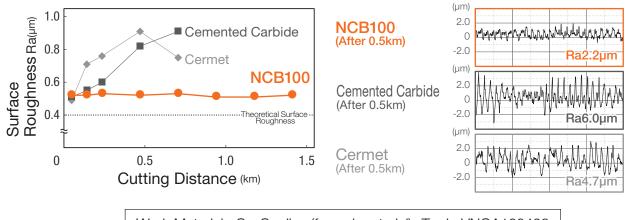

Cutting Conditions : $v_c=150$ m/min f=0.15 mm/rev $a_p=0.5$ mm Wet (High-pressure coolant)

Machined Surface Roughness (Titanium Alloy Machining)

Stable surface roughness profile with values maintained close to theoretical surface roughness for extended periods



Application Range (Co-Cr Alloy Machining)


•Wear Resistance (Co-Cr Alloy Machining)

Increased efficiency through consistent wear resistance even with high-speed machining of 150m/min

Machined Surface Roughness (Co-Cr Alloy Machining)

Maintains stable machined surface roughness

Work Material : Co-Cr alloy (forged material) Tool : VNGA160408 Cutting Conditions : v_c =60m/min f=0.1mm/rev a_p =0.4mm Wet

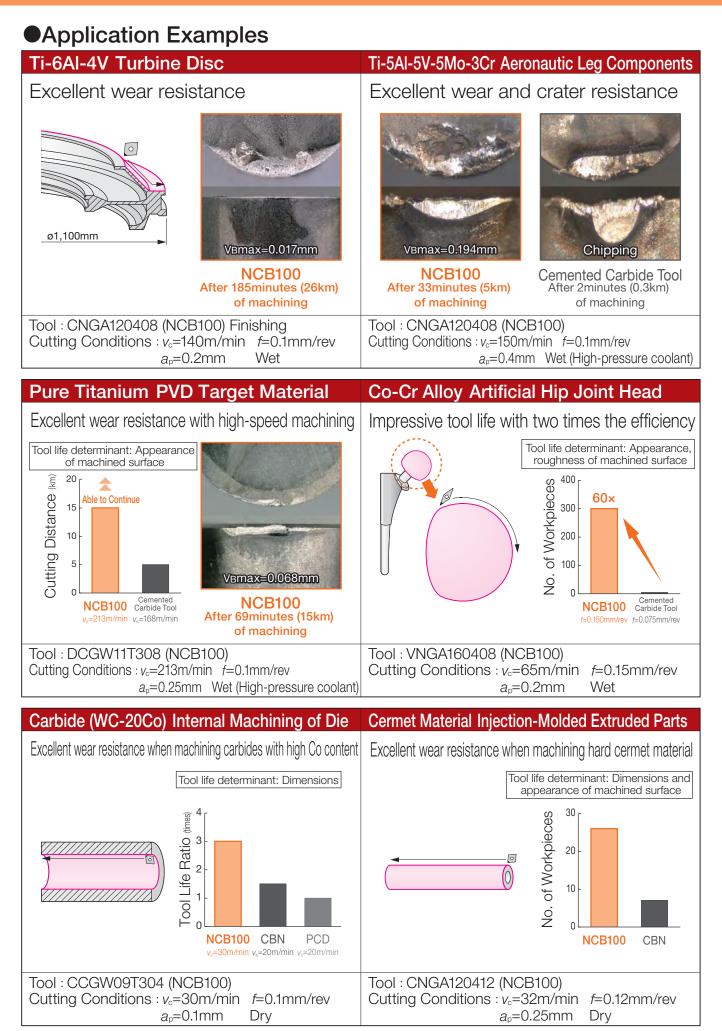
Recommended Cutting Conditions

■ Titanium Alloy

Work Material		Grade	Cutting Conditions Min Optimum - Max.				
Composition	Hardness(HRC)	Grade	Depth of Cut a_{p} (mm)	Feed Rate f (mm/rev)	Cutting Speed $ v_{ m c}$ (m/min)		
Ti-6Al-4V	30 - 35	NCB100	0.10- 0.30 -0.50	0.05- 0.15 -0.20	50 - 200 - 300		
Ti-5Al-5V-5Mo-3Cr	32 - 38	NCB100	0.10- 0.30 -0.50	0.05- 0.10 -0.20	50 - 150 - 250		
Ti-10V-2Fe-3AI	32 - 38	NCB100	0.10- 0.30 -0.50	0.05- 0.10 -0.20	50 - 150 - 250		

Co-Cr Alloy

Work Material Grade		Cutting Conditions Min. – Optimum – Max.			
Composition	Hardness(HRC)	Grade	Depth of Cut a_{p} (mm)	Feed Rate f (mm/rev)	Cutting Speed $ u_{ m c}$ (m/min)
Co-30Cr-5Mo	35 - 45	NCB100	0.10- 0.15 -0.30	0.05- 0.15 -0.20	50 - 100 - 200


Cemented Carbide

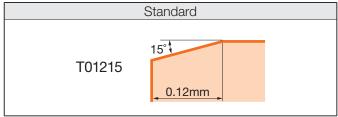
Work Materi	al	Grade	Cutting Conditions Min Optimum - Max.					
Composition	Hardness(HRA)	Glade	Depth of Cut a_p (mm)	Feed Rate f (mm/rev)	Cutting Speed $ v_{ m c} $ (m/min)			
WC-20Co	Below 85	NCB100	0.03- 0.10 -0.20	0.03- 0.10 -0.20	5 - 20 - 40			

 * SUMIDIA BINDERLESS NPD10 recommended for carbide machining at 85HRA or higher.

Others

Work Material		Grade	Cutting Conditions Min Optimum - Max.					
Composition/Material	Hardness(HV)	Grade	Depth of Cut a_{p} (mm)	Feed Rate f (mm/rev)	Cutting Speed $ v_{ m c} $ (m/min)			
Pure Titanium	130 - 230	NCB100	0.10 -0.30- 0.50	0.05 -0.10- 0.20	100 - 250 - 400			
Cermet Material (Iron-based metal included in binder)	1,000 - 1,500	NCB100	0.10 -0.20- 0.30	0.05 -0.10- 0.20	10 - 30 - 50			

Stocks


One-use/Negative (With Hole)

	0	Stock	ners	Dimensions (mm)					
Shape	Cat. No.	NCB100	No. of Corners	Cutting Edge Length	Inscribed Circle	Thickness	Hole Size	Corner Radius	
	NU-CNGA 120404			2.5	12.7	4.76	5.16	0.4	
	120408		1	2.4				0.8	
	120412			2.3				1.2	
	NU-DNGA 150404		1	2.5		4.76	5.16	0.4	
$\langle \circ \rangle$	150408			2.1	12.7			0.8	
	150412			2.0				1.2	
\sim	NU-VNGA 160404		4	2.5	9.525	4.76	3.81	0.4	
	160408		1	1.6				0.8	

One-use/Positive (With Hole)

One-u	12	e/Positive		νIL		ne)			
	gle	, Stock 뚫 Dimensio				nsions	ions (mm)		
Shape	Relief Angle	Cat. No.	NCB100	No. of Corners	Cutting Edge Length	Inscribed Circle	Thickness	Hole Size	Corner Radius
		NU-CCGW 060204		1	2.3	6.35	2.38	2.8	0.4
	7°								
		NU-CCGW 09T304		1	2.5	9.525	3.97	4.4	0.4
	7°	09T308			2.4	9.525	3.97	4.4	0.8
		NU-DCGW 070204		1	2.5	6.35	2.38	2.8	0.4
	7°								
		NU-DCGW 11T304		1	2.5	9.525	3.97	4.4	0.4
	7°	11T308			2.1	0.020			0.8
					0.5				0.4
	5°	NU-VBGW 110304		1	2.5	6.35	3.18	2.8	0.4
	5.	110308			1.6				0.8
		NU-VBGW 160404			2.5				0.4
	5°	160408		1	2.5	9.525	4.76	4.4	0.4
	5	100400			1.0				0.0
		NU-VCGW 160404			2.5				0.4
7	7 °	160408		1	1.6	9.525	4.76	4.4	0.4
	'	100400			1.0				0.0
		L							

•Cutting Edge Figure

 Very hot or lengthy chips may be discharged while the machine is in operation. Therefore, machine guards, safety goggles or other protective covers must be used. Fire safety precautions must also be considered.

< SAFETY NOTES > -

 Please handle with care as this product has sharp edges.
 Improper cutting conditions or mis-handling of the tool may result in breakages or projectiles. Therefore, please use the tool within its recommended conditions.

 When using non-water soluble cutting oil, precautions against fire must be taken and please ensure that a fire extinguisher is placed near the machine.

Sumitomo Electric Industries, Ltd.

Hardmetal Division

Global Marketing Department : 1-1-1, Koyakita, Itami, Hyogo 664-0016, Japan Tel: +81-72-772-4535 Fax: +81-72-771-0088

http://www.sumitool.com/global