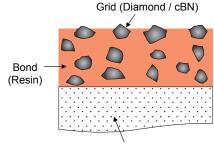
Wheel Figure


Resin Bond Wheel

The main component of resin bond is thermohardening resin. Phenol resin is mainly used but polyimide resin, which has better heat resistance, is becoming more common.

Our products are widely used in many kinds of materials.

■Features

- 1. Elastic property of (resin) bond leads to excellent surface roughness.
- 2. Excellent durability of grinding ability for various kind of materials hard to be ground.

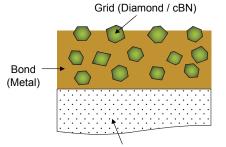
Core Material (Aluminum Alloy or Steel)

Applications

Metal material such as cemented carbide, cermet, and high speed steel

From rough to finish grinding for certain materials such as fine ceramics, ferrite, and glass

Metal Bond Wheel


Metal Bond consists of various types of alloys: copper, tin, steel, cobalt, and tungsten.

MT Bond Wheel applying (our) special metal bond has excellent grinding ability as well as long tool life and is highly recommended for ceramics, carbide, and cermet.

■Features

- 1. Higher wear resistance and abrasive retention lead to long tool life.
- 2. Good grinding ability on glass and ferrite by brittle (fracturing) mode.

Core Material (Aluminum Alloy or Steel)

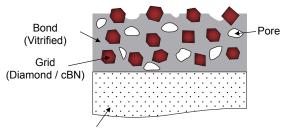
■Applications

Rough grinding for certain material such as glass, ceramics, ferrite, semiconductor material, and stone

Vitrified Bond Wheel

Vitrified Bond is glass-basd ceramic and has been used for conventional grinding wheels through the ages.

We have abundant lineup: "VITMATE" applying cBN, "EG WHEEL" for cemented carbide and ceramic, and "NANOMATE" which is applicable to super finish grinding of semiconductor materials.


Electroplated Wheel

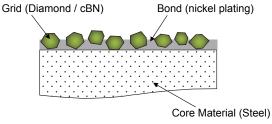
Abrasives are fixed by Ni plating on the surface of steeel bodys which have various kind of precise forms. Our products are widely used in many kinds of materials.

■Features

- 1. Good grinding ability due to pores
- 2. Trueing and dressing of VITMATE can be operated with a Rotary Dresser on the machine
- 3. Special adhesion technology can be applied for high speed grinding.

Core Material (Aluminum Alloy, Steel, Ceramics)

Applications


Steel, cemented carbide, semiconductor material, and ceramics, etc.

Suitable for high efficiency processes of high speed grinding

■ Features

- 1. Excellent durability of grinding ability due to large protrusion (following good chip discharging proper-
- 2. Excellent profile maintaining property due to large number of active grains.
- 3. Easy to be formed and body is reusable

■Applications

Form grinding of cemented carbide, ceramics, magnetic material and steel, etc.

Dry grinding of rubber and FRP, etc.

Wheel Figure

□About Truing and Dressing

Truing and Dressing are important in allowing full grinding ability and effective wheel use.

Truing is wheel forming process including run-out elimination.

Table 1. Method of Truing for Each Type of Diamond and cBN Wheel

Truing Method and Tool			Applicable Abrasive	Applicable Bond (*1 *2)	Forming	Remarks	
		Rotary Dresser	Dia	V	Possible		
	Rotating Type	Rolary Diessei	cBN	V.B	Possible		
		Metal Wheel	Dia	V	Possible	Used mostly with	
Diamond			cBN	V.B.M	Possible	cBN wheel;	
Tool Method		Electrodeposition Arbor	cBN	V.B	Not Possible	cannot be applied to diamond except	
		Single Point, Multi-point Dresser	cBN	V.B	Not Possible	in some cases	
	Static Type	Impregnated Dresser	cBN	V.B	Not Possible		
		Block Dresser	cBN	V.B	Possible		
		Electrodeposition Block Dresser	cBN	V.B.(M)	Not Possible		
	Rotating Type	Grinding Wheel	Dia	B.V.M	Possible	Rotating Type can	
Conventional			cBN	B.V.M	Possible	be used for most diamond and cBN but Static Type is very limited	
Wheel Method	Static Type	Stick	Dia	B.V.(M)	Not Possible		
			cBN	B.V.(M)	Not Possible		
	Rotating Type	Soft Steel Roll	Dia	В	Not Possible	Simple way ap-	
Soft Steel			cBN	В	Not Possible	plied from long	
Method	Static Type	Soft Steel Block	Dia	В	Not Possible	ago; forming is not possible	
	Static Type	COR CROST BIOCK	cBN	В	Not Possible	роззівіє	
Loose Abrasive Method	Lapping		Dia	B.V.M	Not Possible		
Loose Abrasive Method			cBN	B.V.M	Not Possible		
Crash Method	Steel Roll		Dia	V	Possible	Specialized equip- ment is required	
Crash Method			cBN	V	Possible		
Electro-discharge Machining	Electrode		Dia	M	Possible		
			cBN	М	Possible		

^{*1 :} B: Resin Bond , M: Metal Bond, V: Vitrified Bond

Fig.1. Illustration of Truing and Dressing

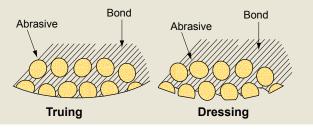
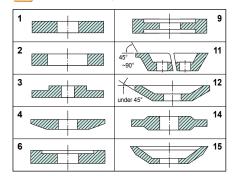
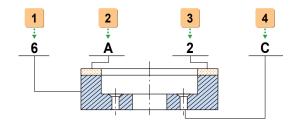


Table 2. Method of Dressing for Each Type of Diamond and cBN Wheel


Dressing M	Applicable Abrasive	Applicable Bond		
		Rotary Dresser	Dia	V
	Rotating Type	Rolary Diessei	cBN	V
		Metal Wheel	Dia	V
Diamond Tool Method		Wetai Wileei	cBN	V
	Static Type	Single Point, Multi-point Dresser	cBN	V
		Impregnated Dresser	cBN	V
	1,700	Block Dresser	cBN	V
	Rotating	Grinding Wheel	Dia	B.V.M
Conventional Wheel Method	Type	Officing Whice	cBN	B.V.M
Conventional vineer Method	Static	Stick	Dia	B.V.M
	Type	Ottok	cBN	B.V.M
	Rotating Type	Soft Steel Roll	Dia	В
Soft Steel Method		GOIL GLECT NOW	cBN	В
Soit Steel Welliou	Static	Soft Steel Block	Dia	В
	Type	GOIL GLECT BIOCK	cBN	В
Free Abrasive Method	Lapping		Dia, cBN	B.V.M
		Blasting	Dia, cBN	B.V.M
Crash Method	Steel Roll		Dia, cBN	V
Electro-discharge Machining			Dia, cBN	M
Electro-chemical Machining			Dia, cBN	М


^{*1 :} B: Resin Bond, M: Metal Bond, V: Vitrified Bond Order of easiness for dressing

 $^{^{\}star}2$: Order of easiness for truing; () is not general

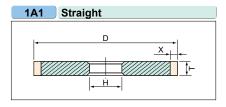
□Identification Method of Wheel Shape

1 Standard Body Shape

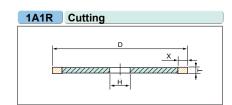
3 Abrasive Layer Position & Symbol Reference to B

Symbol	Position	Diagram
1	Periphery	
2	Side	
3	Both Sides	William Villa
4	Incline or Roundness, Inside	
5	Incline or Roundness, Outside	
6	Part of Periphery	
7	Part of Side	
8	Whole	
9	Edge	
10	Internal	

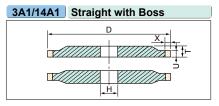
2 Cross Sectional Shape of Abrasive Layer


	Α	D	C	FF		L	(QQ
	АН	DD	2000	G	C	LL		S
	В	E E	J	Н		M		U
0000	С	Œ EE	>	J		Р		٧
	СН	F	\triangleleft	K	63333	Q		Y

4 Modification & Symbol


Symbol	Modification	Diagram
В	Spot Facing Hole	
С	Countersinking Hole	
Н	Straight Hole	
М	Straight & Threading Hole	
Р	Relief at One Side	
Q	Insert of Abrasive Layer	
R	Relief at Both Sides	
S	Segmented Abrasive Layer	
SS	Slot Segmented Abrasive Layer	
Т	Threading Hole	
V	Reverse Attachment of Abrasive Layer	
w	With Shaft	
Υ	Reverse Insert of Abrasive layer	

Wheel Figure


□Standard Wheel Shape 1

